Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Soft Robot ; 9(3): 542-551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34388034

RESUMO

This work presents a unique approach to the design, fabrication, and characterization of paper-based origami robotic systems consisting of stackable pneumatic actuators. These paper-based actuators (PBAs) use materials with high elastic modulus-to-mass ratios, accordion-like structures, and direct coupling with pneumatic pressure for extension and bending. The study contributes to the scientific and engineering understanding of foldable components under applied pneumatic pressure by constructing stretchable and flexible structures with intrinsically nonstretchable materials. Experiments showed that a PBA possesses a power-to-mass ratio greater than 80 W/kg, which is more than four times that of human muscle. This work also illustrates the stackability and functionality of PBAs by two prototypes: a parallel manipulator and a legged locomotor. The manipulator consisting of an array of PBAs can bend in a specific direction with the corresponding actuator inflated. In addition, the stacked actuators in the manipulator can rotate in opposite directions to compensate for relative rotation at the ends of each actuator to work in parallel and manipulate the platform. The locomotor rotates the PBAs to apply and release contact between the feet and the ground. Furthermore, a numerical model developed in this work predicts the mechanical performance of these inflatable actuators as a function of dimensional specifications and folding patterns. Overall, we use stacked origami actuators to implement functionalities of manipulation, gripping, and locomotion as conventional robotic systems. Future origami robots made of paper-like materials may be suitable for single use in contaminated or unstructured environments or low-cost educational materials.


Assuntos
Robótica , Módulo de Elasticidade , Desenho de Equipamento , Humanos , Robótica/métodos
2.
Sensors (Basel) ; 18(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30545031

RESUMO

In this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni 81 Fe 19 ) thin film. To interpret the characteristics of the sensor, we proposed a computational model to capture the influence of the stochastic fiber network of the paper surface and to explain the physics behind the empirically observed difference in paper-based anisotropic magneto-resistance (AMR). Using the model, we verified two main empirical observations: (1) The stochastic fiber network of the paper substrate induces a shift of 45 ∘ in the AMR response of the paper-based Ni 81 Fe 19 thin film compared to a Ni 81 Fe 19 film on a smooth surface as long as the fibrous topography has not become buried. (2) The ratio of magnitudes of AMR peaks at different anisotropy angles and the inverted AMR peak at the 90 ∘ -anisotropy angle are explained through the superposition of the responses of Ni 81 Fe 19 inheriting the fibrous topography and smoother Ni 81 Fe 19 on buried fibrous topographies. As for the sensitivity and reproducibility of the sensor signal, we obtained a maximum AMR peak of 0 . 4 % , min-max sensitivity range of [ 0 . 17 , 0 . 26 ] % , average asymmetry of peak location of 2 . 7 kA m within two consecutive magnetic loading cycles, and a deviation of 250⁻850 A m of peak location across several anisotropy angles at a base resistance of ∼100 Ω . Last, we demonstrated the usability of the sensor in two educational application examples: a textbook clicker and interactive braille flashcards.

3.
ACS Appl Mater Interfaces ; 8(40): 27081-27090, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627127

RESUMO

We report a novel partial dissolution strategy to liberate uniform cellulose nanofibers with diameter of 5-10 nm from macroscopic cellulose fibers and promote separation of nanofibers in an aqueous environment by forming water-soluble sodium carboxymethylcellulose (CMC) through heterogeneous sodium acetoxylation of cellulose. With the obtained cellulose nanofibers, we fabricated nanopapers which exhibit high optical transparency of 90.5% (@550 nm) with promising mechanical properties and high thermal stability. By directly depositing Ag nanowires on a wet nanofiber sheet, we fabricated a flexible transparent electrode with 86.5% (@550 nm) transparency and 26.2 Ω/sq sheet resistance (Rs). Meanwhile, we studied the magnetic properties of sputter deposited thin film of permalloy on nanopaper which exhibited a similar magnetic coercivity and a close saturation magnetization to conventional silicon dioxide-based permalloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...